XRCC4's interaction with XLF is required for coding (but not signal) end joining
نویسندگان
چکیده
منابع مشابه
XRCC4's interaction with XLF is required for coding (but not signal) end joining
XRCC4 and XLF are structurally related proteins important for DNA Ligase IV function. XRCC4 forms a tight complex with DNA Ligase IV while XLF interacts directly with XRCC4. Both XRCC4 and XLF form homodimers that can polymerize as heterotypic filaments independently of DNA Ligase IV. Emerging structural and in vitro biochemical data suggest that XRCC4 and XLF together generate a filamentous st...
متن کاملThe absence of Ku but not defects in classical non-homologous end-joining is required to trigger PARP1-dependent end-joining.
Classical-non-homologous end-joining (C-NHEJ) is considered the main pathway for repairing DNA double strand breaks (DSB) in mammalian cells. When C-NHEJ is defective, cells may switch DSB repair to an alternative-end-joining, which depends on PARP1 and is more erroneous. This PARP1-EJ is suggested to be active especially in tumor cells contributing to their genomic instability. Here, we define...
متن کاملXLF Interacts with the XRCC4-DNA Ligase IV Complex to Promote DNA Nonhomologous End-Joining
DNA nonhomologous end-joining (NHEJ) is a predominant pathway of DNA double-strand break repair in mammalian cells, and defects in it cause radiosensitivity at the cellular and whole-organism levels. Central to NHEJ is the protein complex containing DNA Ligase IV and XRCC4. By searching for additional XRCC4-interacting factors, we identified a previously uncharacterized 33 kDa protein, XRCC4-li...
متن کاملLymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination.
Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased...
متن کاملPAXX promotes KU accumulation at DNA breaks and is essential for end-joining in XLF-deficient mice
Non-homologous end-joining (NHEJ) is the most prominent DNA double strand break (DSB) repair pathway in mammalian cells. PAXX is the newest NHEJ factor, which shares structural similarity with known NHEJ factors-XRCC4 and XLF. Here we report that PAXX is dispensable for physiological NHEJ in otherwise wild-type mice. Yet Paxx-/- mice require XLF and Xlf-/- mice require PAXX for end-ligation. As...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleic Acids Research
سال: 2012
ISSN: 0305-1048,1362-4962
DOI: 10.1093/nar/gkr1315